Данный блог был создан в помощь всем тем, кому предстоит экзамен по ОЗиЗ. Справа вы можете выбрать раздел по ключевому слову через ярлыки, либо Выберите нужный вопрос в архиве блога.
Вы можете помочь развитию данного проекта- рублевый кошелек ВебМани: 262919153496

вторник, 5 января 2010 г.

Средний уровень признака. Средние величины

Для вычисления средних величин необходимо построить вариационный ряд. Вариационные ряды бывают: 1) простыми и взвешенными; 2) сгруппированными и несгруппированными; 3) открытыми и закрытыми; 4) одномодальными и мультимодальными; 5) симметричными и несимметричными; 6) дискретными и непрерывными;
7) четными и нечетными.
Средние величины — это количественная обобщающая характеристика однородной совокупности с изменяющимся варьирующим признаком. Они используются при оценке физиологических показателей (средняя частота пульса, дыхания, АД), параметров физического развития (средний рост юношей 18 лет, средняя масса тела), при санитарно-гигиенических характеристиках (средняя жилая площадь на одного человека, среднее число бактерий в 1 мл), при количественном описании медицинских услуг (среднее число посещений в час, средняя занятость койки в течение года). Виды средних величин: средняя арифметическая простая (сумма всех значений признака, деленная на число наблюдений); средняя арифметическая взвешенная (сумма всех величин, умноженная на свое число встречаемости и деленная на число наблюдений — объектов); мода — величина с наибольшей частотой повторения; медиана — величина, делящая вариационный ряд пополам; средняя прогрессивная — средняя арифметическая, вычисленная из лучшей половины вариационного ряда.
Основные свойства средней величины: 1) имеет абстрактный характер, так как является обобщающей величиной: в ней стираются случайные колебания; 2) занимает срединное положение в ряду
(в строго симметричном ряду); 3) сумма отклонений всех вариант от средней величины равна нулю. Данное свойство средней величины используется для проверки правильности расчета средней. Она оценивается по уровню колеблемости вариационного ряда. Критериями такой оценки могут служить: амплитуда (разница между крайними вариантами); среднее квадратическое отклонение, показывающее, как отличаются варианты от рассчитанной средней величины; средняя ошибка средней арифметической (отношение среднего квадратического отклонения к квадратному корню из общего числа наблюдений — объектов).
Степень разнообразия (колеблемости) признака в разнородном вариационном ряду можно оценить по коэффициенту вариации (отношение среднего квадратического отклонения к средней арифметической, умноженное на 100%); при вариации менее 10% отмечается слабое разнообразие, при вариации 10—20% — среднее, а при вариации более 20% — сильное разнообразие признака. Если нет возможности сравнить вариационный ряд с другими, то используют правило трех сигм. Если к средней прибавить одну сигму, то этой вычисленной средней соответствует 68,3%, при двух сигмах — 95,4%, при трех сигмах — 99,7% от всех признаков.


Средняя величина - это число, выражающее общую меру исследуемого признака в совокупности. С помощью средних величин измеряют средний уровень изучаемого признака, т.е. то общее, что характерно для него в данной совокупности.
Применение средних величин
1. Для оценки состояния здоровья, например: средний рост, вес, функциональные показатели: АД, ЧСС, ЧД, уровень холестерина и.т.д.
2. при оценке организации медицинской помощи и деятельности ЛПУ, например средняя посещаемость в день, средняя длительность лечения по отдельным заболеваниям и.т.д.
Виды средних величин
a) Мода Мо - величина признака (или варианта), которая чаще других встречается в донной совокупности.
b) Медиана Ме – это величина признака, занимающая срединное положение в вариационном ряду. Она делит ряд на две равные по числу наблюдений части. Для ее определения находят середину ряда. В ряду с четным числом наблюдений за Ме принимают среднюю величину из двух центральных вариант. При нечетном числе наблюдений Ме будет соответствовать центральная варианта, для этого (n-1)/2 ; где n- число наблюдений.
c) Средняя арифметическая М – это обобщенная величина, характеризующая размер варьирующего признака совокупности. Она равна среднему значению всех вариант в вариационном ряду.
Свойства средней арифметической:
-имеет абстрактный характер, не показывает индивидуальность, а характеризует то типичное, что свойственно всему ряду,
-занимает среднее положение в вариационном ряду,
-сумма отклонений всех вариант от средней арифметической равна нулю т.е.
(V – M) = 0
Способы расчета средней арифметической
1. Среднеарифметический способ.
2. Способ моментов.

Комментариев нет:

Отправить комментарий